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The low frequency sound from multipole sources in 
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(Received 1 July 1975) 

A previous analysis of the acoustic radiation from multipole sources is extended 
to include additional components of the dipole and quadrupole sources. It is found 
that, unlike the components of the sources considered in the previous paper, the 
exponent of the Doppler factor now depends on the location of the sources within 
the jet. 

1. Introduction 
In  an earlier paper by Goldstein (1975; hereafter referred to as I) closed-form 

solutions were obtained for the acoustic radiation from certain types of multipole 
sources imbedded in an infinite cylindrical jet (see figure 1 of I). The results are 
valid in the limit where the wavelength of the sound is long compared with the 
jet radius. The types of sources considered were monopoles, dipoles with their 
axes aligned with the flow direction (2 direction), and r-Z,8-2 and 2-2 quadru- 
poles. But of these three quadrupole sources, only the r-Z component was found 
to contribute to the low frequency sound field. It was shown that the exponent n 
of the Doppler factor (1 - M cos 8)-. multiplying the pressure signal from this 
quadrupole was increased by the mean flow, thus providing a possible explanation 
for the observed concentration of low frequency sound on the downstream axes 
of real air jets. However, the results raised the question of whether or not the 
components of the quadrupole which were not considered could also contribute 
appreciably to the on-axis sound. In  the present paper we attempt to answer this 
question by considering the remaining components of the dipole and quadrupole 
sources. All these components are found to contribute to the radiation field but, 
unlike the sources considered in I, the resulting formulae for the acoustic pressure 
no longer depend only on the local properties of the flow. Instead they exhibit a 
dependence on the complete velocity profile. 

The general formulae for the acoustic radiation are expressed in terms of a 
certain homogeneous solution to an ordinary differential equation. This solution 
is worked out in detail for a jet with a power-law velocity profile (i.e. U N 1 - rh, 
where h can be any positive number) and specific formulae for the radiation field 
are given for this case. Approximate formulae, which are very easy to interpret 
physically, are also given. They show that the exponents of the Doppler factors 
of the quadrupole sources considered in this paper are, in the main, not changed 
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as much by the mean flow as those of the quadrupole sources considered in I. 
Moreover these exponents are now found to depend on both the position of the 
sources in the jet and the shape of the mean velocity profile. In  most cases the 
sources exhibit a behaviour which is intermediate between that o f  the sources 
studied in I and that of sources moving through a stationary medium. 

2. Analysis 
The notation used in this paper is the same as that used in I. In the latter 

report i t  was shown that for dipole and higher-order sources the 7-2 Fourier- 
transformed pressure 

is governed by the equation 

We obtained a solution to this equation which is valid for small values of the 
dimensionless frequency 6 = or,/& (with K = k/e of order one) but considered 
only thecasewhere the volume force (dipole strength) f ispurelyaxial (i.e. f = k3f3, 
where k3 is a unit vector in the direction of the mean flow). In the present report 
we shall consider the remaining transverse component ft = f - k, f3 of this force. 
Then, in the region near the jet where r is of order one (i.e. the inner region) we 
seek an expansion of the form 

P = €In €P(--l) + P O )  + a(€)  P I ) .  . . , a(€)  = O(€) ,  

and obtain in the limit as c-+ 0 with r held fixed 

If we now expand the solution to the latter equation in the Fourier series 
m 

PCO) = P$'(r)eW 
n=--00 

we find that the lowest-order Fourier coefficients are determined by 
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and 

- - exp [ie(~.Z + T) T i$] V . [ ( 1 + K U ) '  ft ]dZdTdq5. (4) 

But integrating (3) twice shows that 

Consequently, assuming that ft vanishes faster than any power of r as r --f co, we 
find that as r -+ co 

Pip) N b, + c, In r + terms which are smaller than any power of r ,  

where c,  is given by 

the omission of the limits on the second integral indicates that the integration is 
to be carried out over all space and d y  denotes a three-dimensional volume 
element. But applying the divergence theorem shows that c, = 0. Hence, as 
r+co 

Pbo' N bn + arbitrarily small terms. ( 5 )  

On the other hand, the results in appendix A show that, if the source distribu- 
tion decays sufficiently rapidly, 

Pp) N crrf l ,  P'o\ N c&lr*l as r+co, 

and %(K, T) is any homogeneous solution of (4) which vanishes at  r = 0. Finally, 
if the source distributions vanish faster than any power of r as r -+ co it can be 
shown that the remaining Fourier coefficients behave like 

P$?-c$r*n as r+co, n + 0. 

This solution is not valid at large distances from the jet. Hence, in order to 
determine the properties of the sound in the radiation field we must construct 
an outer expansion. To this end we introduce the outer variable 

i = er (7) 

into (2) and expand its solution for the limit e + 0 with i: held fixed. Then, if we 
again assume that both the mean velocity field of the jet and the source distribu- 
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tion vanish sufficiently fast as r+co, (2) will reduce to the ordinary wave 
equation? 

where of is the transverse Laplacian E - ~ V !  in the outer variables. Consequently, 
the outer expansion is 

Vz,P+(Mz-K2)P = 0, 

P = ~ ( o ) ( + , $ ) + E p ( l ) ( + , $ ) + B ( E ) ~ ( 2 ) (  +,$)+..., B(a)  = O ( E ) ,  (8) 

and, a t  least for the first few m, the p(m) are determined by 

9 2 p ( m )  + K 2 p ( m )  = 0 

where we have put K = ( M Z - K ~ ) ) ,  (9) 

This equation will possess an outgoing-wave solution only if K is real, in which 
case the solution can be written as 

where the HE) denote the Hankel functions. 
The constants b,, cf and Cp) are determined by requiring that inner and outer 

expansions ‘match’ to the proper order in some intermediate region. This can be 
accomplished either by using the matching principle of Van Dyke (1964, p. 64) 
or by introducing intermediate variables and re-expanding in the overlap domain 
(Cole 1968, p. 234). In  either case we find that 

PC-1) = constant, Bo) = 0, 

Hence it follows from (1)  and (7)-(11) that, to lowest order in E ,  the pressure 
fluctuation in the outer region is given by 

2J -SmmS-mm E eXp [ - i € { K ( Z  - zo(7)) f (7 f K z o ( 7 ) ) } ]  

x (ei@Cf)- e-i8C‘1:)H(,)(€Kr)dkd€, 

where 2,(7) has been added and subtracted in the exponent for future con- 
venience. (If the source region is moving 2, can be thought of as the axial 
co-ordinate of this region at some appropriate time. If the source region is 
stationary no generality is lost if 2, is set equal to zero.) 

When r is much larger than a wavelength we can replace the Hankel function 
H‘,1‘in the preceding equation by its asymptotic expansion to obtain 

exp { - ~ E [ K ( Z  - 2,) - Kr]} 
E exp [ - ic(7 + K Z J ]  

(K4+ 

t A t  least to  any order of E which is of interest. 
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where P, $ and 2 are the cylindrical co-ordinates of the source point y and $ is 
the divergence operator in these variables. Then, applying the method of 
stationary phase to this result in the same way as in I, we find that as R +co 

where 

f . ~ [ C O S  (4  - 6) J (6 ,  P)] df d7, 
sin 6 

X 
( i - m h s 6 ) 2  

J (6 ,  P) K (  - M cos 6, ?)/ Yi( - M cos 6, CO), 

U is now a function of P and, as in I, we have introduced the polar co-ordinates 

R 5 {r2 + [Z  - 2,(7)12}*, 6 = tan-1 [r /(Z - Z0(7))]. 

Upon explicitly introducing the lateral dipole and quadrupole sources by means 
of equation (3) of I, integrating the quadrupole terms by parts and recognizing 
that & is a homogeneous solution of (4) ,  we obtain 

9 = 9 D + P ' O ,  
where 

exp [k (7  - &M cos 6)] 
( l - M U ~ o s 6 ) ~  

x sin 6[D, cos ($ - 4) J'(6, ?) + P-lD, sin (9 - 4) J(8,4)] dg d7, (14) 

- 2M U' cos 6 
ro( 1 - M U  cos 8)3 

JV ,  P) sin 8sin (9 - $1- 9 l& 

(15) 

the primes now denote differentiation with respect to the co-ordinate P and the 
subscripts r and 9 denote components of the vector or tensor D or T along these 
directions. This is the h a 1  expression for the far-field acoustic pressure fluctua- 
tions due to the components of the dipole and quadrupole sources which were not 
considered in I. The formula contains the quantity J ,  which depends on the 
homogeneous solution of (4) .  We do not have an explicit formula for this solution 
for the case of an arbitrary velocity profile. But for a power-law velocity profile, 



22 M .  E. Goldstein 

it  may be expressed in terms of the hypergeometric function F(a,p,r; t )  by 
equation (B 1)  of appendix B. In  order to understand the significance of this 
result it  is useful to consider the special case of point sources carried along a t  the 
local velocity of the flow. 

Convected point sources 

Consider a harmonic point source with dimensionless frequency eo moving with 
a convection velocity U, (which may in general be different from the local jet 
velocity V(rs) V, a t  the dimensionless source radius r,). For convenience we take 
the normalizing velocity U, to be the source convection velocity U,. In  order to 
emphasize this choice we shall write M, in place of M = Us/ao. Then the source 
strengths must be of the form 

where the symbol Sis  used to designate any of the source strengths D,, Do, T,,, etc. 
For purposes of comparison we take z0(7) to be the dimensionless position of 

the source a t  the emission time r0(7/&- R/ao) of the sound wave reaching the 
point (ror,  q5, roZ) a t  the time r07/U,. Thus 

2 0  = 7-MCR. (17) 

Then inserting (16) into (14) shows that 

x sin @[D$O’ cos q5 &(O, rs) + r;l Ds’sin 4 J,(8, rS)] ,  

where Mj = V(r,)M, is the local jet Mach number a t  the radial location of the 
source, Mj E M, U’(r,) is the Mach number gradient a t  the source location, 

(18) 

and a similar expression holds for 8,. Inserting these results together with (17)  
into (12 )  now shows that the pressure fluctuations at sufficiently large values of 
the distance ro R between the observation point and the source emission point 
are given by 

P = PD+PQ, 
where 

J ,  =_ Y,( - M, cos 8, rs)/ Y;( - M, cos e , ~ )  

+r42&.,] a J,(e’ “) Dko’ cos q5 ] exp [ieo( M, R - T ) ]  , 

x exp [~E.,(M,R- T ) ] .  (20 )  



Xound from multipole sources in axisymmetric shear flows 23 

IEc (4 

FIGURE 1. Specific jet velocity profiles. (a) Linear profile. ( b )  Trapezoidal profile. 

The results of appendix B show that, for the power-law velocity profile (see 

prs( 1 -Mi cos 8 ) - ~  P ( y ,  3 + y ;  p; r.$MJI cos S/( 1 - 44 cos 0)) 

figure 1 a )  U = U,( 1 - rA), 

(21) p q y ,  3 + y ; p ;  H,, cos 8 )  +HJfcos  8P(l+ y, 3 + y ; p  + 1; & f C O S 8 )  ' 
J ,=  

where 

MM = ?& Mc is the Mach number a t  the centre-line of the jet and the exponent h 
of the velocity profile can be any positive number. Similar expressions can be 
obtained for the trapezoidal profile shown in figure l ( b )  but we shall, for 
simplicity, restrict our attention to the power-law profile. 

y G A-1- 1 + ( 1  +A+, p = 2h-1+ 1, 

3. Approximate formulae 
The complexity of this expression for J ,  makes it difficult to interpret the 

physical content of (19) and (20). But expanding (21) about cos8 = 0 (i.e. 
8 = 90") shows that 

J ,  = rs( 1 - v o J !  cos 8 )  + O(cos2 8) as 8+ &r, 

where To = (1 - 2A-1p-lr?)/( 1 - T i ) .  (22) 

Hence J ,  = r,( 1 - Mj cos 8)vo + O(cos2 8 )  as 8-t tn-, (23) 

and this function will provide a fairly good fit to the true value of J ,  over the 
entire range of 8. The approximate expression (23) is compared with the exact 
formula (21) for h = 1 in figure 2 .  

Similarly, expanding a[rg1J,(8, rS)]/ars about cos 8 = 0 shows that 

qTfr:-l cos 8(1 - v141j cos 8)  + o(cos2 8 )  as e+ +m, (24) 

where 
Hence 

as 0+&, (26) 

and we again obtain a fair approximation to the true value of a(r;lJ,)/ars for the 
whole range of 8. The approximate expression ( 2 6 )  is compared with the exact 
result for h = 1 [obtained by differentiating (21)] in figure 3. 
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FIGURE 2. Comparison of exact and approximate formulae for J ,  for A = 1. -, exact 
equation (21); 0 ,  approximate equation (23). (a) MM = 0.5. (b)  MM = 0.9. 

Upon inserting the approximate formulae (23) and (26) into (19) and (20) we get 

(Mceo/ro) sin e D)O)cos q5 + D$"sin q5 
(i-Mjcose)2-~o *D rv 4 T i ( r 0 ~ )  (1 - M , ~ O S O ) ~  

exp [~B,(M,R - T)]. (28) I 2[(Tg)- T$i) cosq5-2rT$$sinq5] 
Ap( 1 - M, cos 8)2- 

4- 
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FIGURE 3. Comparison of exact and approximate formulae for the derivative of J, for h = 1. - ,exact, from equation (21); 0 ,  approximate equation (26). (a) MM = 0.5. ( b )  MM = 0.9. 

4. Discussion of results 
As was done in I, it is instructive to compare these results with the corre- 

sponding formulae for point sources moving through a medium at rest. (For 
simplicity we restrict our attention to the case where Hj = M, = M .  Never- 
theless, it  should be kept in mind that part of the Doppler factor is associated 
with the source convection effects, which will be present even when the sources 
are moving through a stationary medium.) The results therefore show how the 
mean-flow interaction effects modify the acoustic radiation patterns that arise 
from freely convecting source models. The predominant difference in the dipole 
source comes from the change in the exponent n of the Doppler factor 
(1 - M cos 6')-n, while for the quadrupole there is in addition an augmentation 
of the acoustic efficiency of the source to the level of the dipole. These effects 
were also observed for the components of the sources considered in I. In  the 
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FIGURE 4. Variation of Doppler-factor exponents with source position for A = 1. 

present case there is also a relatively small modification of the directivity pattern 
due to the deviation of the approximate values of J ,  and JE from the values pre- 
dicted by the exact equations. More important, however, the modification of the 
exponent of the Doppler factors is different from that for the sources considered 
in I and the nature of this modification now depends on both the position of the 
sources within the jet and the shape of the velocity profile (owing to the depend- 
ence of r0 and rl on r, and A). These functions [which are given by (22) and (25)] are 
plotted for h = 1 in figure 4. It can be seen from this figure that ro varies roughly 
between one and two. Hence the first terms in (27) and (28) have Doppler factors 
whose exponents are always smaller than those of the corresponding sources in I, 
and in fact when the sources are located near the edge of the jet, their Doppler 
factors approach those of sources moving through a medium at rest. The figure 
also shows that ?l1 has a value near zero for small r, and becomes increasingly 
negative as r,-+ 1. Hence the second groups of terms in (27) and (28) represent 
sources which, when near the jet axis, have Doppler-factor exponents that are 
less than or equal to those of the sources in I. (The exponents for the dipole 
sources are equal while those for the quadrupole are not.) When these sources are 
moved towards the outside of the jet, the exponents increase. However, as can be 
seen from figure 4, most of this increase occurs when the sources are very near the 
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edge of the jet (and hence are moving with very low velocities). Over most of the 
range of source positions the exponent of the quadrupole source is less than 5 
(which is the exponent found in I) and that of the dipole source is less than 4 
(which is greater by one than the exponent found in I). The results for other 
velocity profiles are similar. Notice that the magnitude of rl increases with 
increasing h while yo approaches a constant as h-t 0. 

Another remarkable difference between the present quadrupole sources and 
those moving through an undisturbed medium is due to the factor sin6cosB 
multiplying (28). Thus the sources in this equation all represent quadrupoles 
whose axes are transverse to the 2 direction. In the absence of a mean flow such 
quadrupoles exhibit directivity patterns which vary like sin2 8 and hence vanish 
only on the jet axis. The radiation field from the present sources vanishes both 
on the jet axis and at 90" to this axis. All the quadrupole sources as well as the 
part of the dipole source due to the second term in (27) behave in this manner. It 
should be noted that, like the quadrupole sources, the latter term is proportional 
to the local Mach number gradient. 

Appendix A 
Since (4) has two linearly independent homogeneous solutions, say Yl and Y2, 

which behave like 
Yl - constant x r, Y2 N constant x r-l 

at the regular singular point r = 0, its solution which remains bounded at r = 0 
is given by 

where we have put 

and W(r)  = Y,(r) Y;(r)--G(r) Yi(r) = constant x (1 + ~ U ) 2 / r  (A 3j 

denotes the Wronskian of & and yZ .  
If U-+ 0 sufficiently rapidly as r-tco, and yZ must behave like 

Yl - ulJr + u12r, Y2 - u24r + uz2r as r --f 00 (A 4) 

to within terms of negligibly small order. Hence P$i will remain bounded at 
infinity only if we put 

A* = -- a Y1(r) F*(d dr.  u2zs a12 0 W ( r )  

Then, since it follows from (A4) that W ( r )  - 2(ullu22-u21u12)/r as r+00 and 
Yi(00) = u12, the solution (A 1) which remains bounded at infinity behaves like 
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Appendix B 
In  the special case where the velocity profile is a function of the form 

where the exponent h is an arbitrary positive constant, q, the homogeneous 
solution of (4) which remains bounded a t  r = 0, can be expressed in terms of 
the hypergeometric function F(u, b ;  c; z )  as 

where 6 KUnlrh/(i + K U M ) ,  7 h-l- 1 + (1  +h- 2 ) t ,  p = 2h4+ 1. 

The first expression holds for 6 in the range 0 < 6 < 1 while the second holds 
in the range < 4. For our purposes the latter form is preferable since only those 
values of KU,, whose magnitude is less than unity can influence the far-field 
pressure and, for these values, the second expression will have a convergent 
power-series expansion for all r in the range 0 < r < I. 

For r > 0 the solution is 
= a/r+br, r > I. 

But if q and dY,/dr are to be continuous a t  r = 1 we must require that 
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